dskjal
deeplearning カテゴリの記事一覧を表示しています。
広告
広告

LLM を使ったストーリー作成

カテゴリ:deeplearning

LLM を使ったストーリー作成が一発でうまくいく事はない。なので、ストーリー作成の各工程ごとにアイデア出しの補助をさせることでストーリーを作成する。

AI のべりすとは日本語が使えるが性能は高くない。無料で公開されているローカル実行できる LLM を英語で使ったり、Chat GPT を使う方が効率がいい。AI のべりすとの強みはアダルト文章を日本語で出力できることだ。

モデルについてはおすすめの日本語対応ローカル大規模言語モデルを参照。

目次

続きを読む

Qwen Image Layered を ComfyUI で動かす

カテゴリ:deeplearning

Qwen/Qwen-Image-Layered

Qwen Image Layered は画像1枚とプロンプトを入力すると、複数枚の透過画像を出力するモデルだ。

学習画像は主にポスターで、文字・画像・背景・小物を分離するのが得意だ。Live2D 用に人体のパーツを分解することはできない。

続きを読む

Wan 2.1 の論文メモ

カテゴリ:deeplearning

続きを読む

Diffusion-DPO(Diffusion-Direct Preference Optimization)の学習方法

カテゴリ:deeplearning

Diffusion-DPO Diffusion Model Alignment Using Direct Preference Optimization は SD3 でも使われた強化学習手法。SD3 ではランク 128 の LoRA として作成している。

ただし、画風や新しい概念の学習のような一般的なタスクは SFT(教師ありファインチューニング)が適している。「○○がうまく描けない」というニーズは○○が言語化できているので SFT を使うべき。SFT はデータセットを用意しやすいし学習負荷も低い。

Diffusion-DPO を使うケース

  • 言語化が困難だが描いてほしくないもの(暴力的・性的表現)がある
  • ユーザーの選好データを持っている
  • 細部の表現の崩れを改善したい

SFT(教師ありファインチューニング)と Diffusion-DPO との違い

続きを読む

bong_tangent スケジューラーの特徴

カテゴリ:deeplearning

続きを読む

ComfyUI のスタックトレースを取得する

カテゴリ:deeplearning

続きを読む

ComfyUI の EmptyLatentImage と EmptySD3LatentImage の違い

カテゴリ:deeplearning

続きを読む

スケール則の終わり

カテゴリ:deeplearning

LLM のスケール則はモデルサイズ、データセットサイズ、学習に使う計算量の3つを適切な比率で増加させれば、LLM の性能は増加量に比例して向上する、という経験則だ。

しかし LLM のデータセットは Web のスクレイピングデータで、それで差別化するのが困難になった。その結果 CoT や RLVR のような計算リソースをつぎ込んで性能を上げる手法を使うようになった。現在の方向では最も低コストな計算リソースを所有する企業が勝者になり、それは自社で学習・推論用 TPU を設計・製造できる Google になる可能性が高い。

続きを読む