よく検索されているプロンプト(R18)
ComfyUI の ModelSamplingAuraFlow とは何か
ModelSamplingAuraFlow は高解像度画像を生成する際に、ノイズが不足しないようにするノード。
中身は ModelSamplingSD3 ノードと同じ。詳細は SD3 論文の p. 10 Resolution-dependent shifting of timestep schedules を参照。
ノイズを増量することで画像にディティールを追加する使い方もできる。
Stable Video Infinity のエラーリサイクリングファインチューニングとは何か
vita-epfl/Stable-Video-Infinity
この論文の考え方はとても重要だ。既存の生成 AI は推論時にエラーが発生するにも関わらず、学習時には推論エラーがないものとして学習していた。なので推論が長くなるとエラーが蓄積し出力が劣化する。これは動画だけでなく LLM でも同様の現象が起こる。
エラーリサイクリングファインチューニングは意図的にモデルの推論エラーを学習データに注入することで、モデルに自己修正能力を持たせるファインチューニング手法だ。
既存技術
Z Image の LoRA 作成 tips
Danbooru タグ検索
LoRA の学習方法
- 画像加工
- トリミング
- 背景除去
- 白背景
- 物体検出
- Aspect Ratio Bucketing
- キャプション・設定ファイル
- キャプション方式
- タグ編集アプリ
- キャプションファイルの先頭にタグを追記するコマンド
- 設定ファイルの class_tokens
- トリガーワード
- 画風学習のキャプションファイル
- キャラ学習のキャプションファイル
- keep_tokens
- VRAM 削減
- fp8_base
- mixed_precision
- xformers
- gradient_checkpointing gradient_accumulation_steps
- データの水増し
- 過学習防止
- 学習
- fp16 と bf16
- サンプルの出力
- 学習方式の選択
- リピート数とエポック数
- network_dim
- dim_from_weights network_weights
- network_alpha base_weights base_weights_multiplier
- min_snr_gamma
- debiased_estimation
- zero_terminal_snr
- v_parameterization
- noise_offset
- 学習率
- スケジューラ
- オプティマイザ
- 階層別学習率
- 高速化
- 省メモリ設定
- logging_dir
- SDXL
- 検証
- 学習の再開
- メタデータの閲覧
スケール則の終わり
LLM のスケール則はモデルサイズ、データセットサイズ、学習に使う計算量の3つを適切な比率で増加させれば、LLM の性能は増加量に比例して向上する、という経験則だ。
しかし LLM のデータセットは Web のスクレイピングデータで、それで差別化するのが困難になった。その結果 CoT や RLVR のような計算リソースをつぎ込んで性能を上げる手法を使うようになった。現在の方向では最も低コストな計算リソースを所有する企業が勝者になり、それは自社で学習・推論用 TPU を設計・製造できる Google になる可能性が高い。
ComfyUI で使える高速化・VRAM 技術
ComfyUI は PyTorch attention = FlashAttention がデフォルトで使われる。昔は xformers(中身は FlashAttention)も使われていたが、最近では PyTorch attention を使うことが多い。
ComfyUI のオプションは comfy/cli_args.py を見るのが早い。
目次
Diffusion-DPO(Diffusion-Direct Preference Optimization)の学習方法
Diffusion-DPO Diffusion Model Alignment Using Direct Preference Optimization は SD3 でも使われた強化学習手法。SD3 ではランク 128 の LoRA として作成している。
ただし、画風や新しい概念の学習のような一般的なタスクは SFT(教師ありファインチューニング)が適している。「○○がうまく描けない」というニーズは○○が言語化できているので SFT を使うべき。SFT はデータセットを用意しやすいし学習負荷も低い。
Diffusion-DPO を使うケース
- 言語化が困難だが描いてほしくないもの(暴力的・性的表現)がある
- ユーザーの選好データを持っている
- 細部の表現の崩れを改善したい